918 resultados para monoclonal antibody production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cryogel matrices composed of different polymeric blends were synthesized, yielding a unique combination of hydrophilicity and hydrophobicity with the presence or absence of charged surface. Four such cryogel matrices composed of polyacrylamide-chitosan (PAAC), poly(N-isopropylacrylamide)-chitosan, polyacrylonitrile (PAN), and poly(N-isopropylacrylamide) were tested for growth of different hybridoma cell lines and production of antibody in static culture. All the matrices were capable for the adherence of hybridoma cell lines 6A4D7, B7B10, and H9E10 to the polymeric surfaces as well as for the efficient monoclonal antibody (mAb) production. PAAC proved to be relatively better in terms of both mAb production and cell growth. Further, PAAC cryogel was designed into three different formats, monolith, disks, and beads, and used as packing material for packed-bed bioreactor. Longterm cultivation of 6A4D7 cell line on PAAC cryogel scaffold in all the three formats could be successfully done for a period of 6 weeks under static conditions. Continuous packed-bed bioreactor was setup using 6A4D7 hybridoma cell line in the three reactor formats. The reactors ran continuously for a period of 60 days during which mAb production and metabolism of cells in the bioreactors were monitored periodically. The monolith bioreactor performed most efficiently over a period of 60 days and produced a total of 57.5 mg of antibody in the first 30 days (in 500 mL) with a highest concentration of 115 mu g mL(-1), which is fourfold higher than t-flask culture. The results demonstrate that appropriate chemistry and geometry of the bioreactor matrix for cell growth and immobilization can enhance the reactor productivity. (C) 2010 American Institute of Chemical Engineers Biotechnol. Prog., 27: 170-180, 2011

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among various physiological responses to salt stress, the synthesis of a lectin-related protein of 14.5 kDa was observed in rice plants (Oryza sativa L.) under the treatment of 170 mmol/L NaCl. In order to better understand the role of the SALT protein in the physiological processes involving salinity, it was immunolocalized in mesophilic cells of leaf sheath and blade of a rice variety IAC-4440 following monoclonal antibodies produced by hybridome culture technique. This variety turned out to be an excellent model for that purpose, since it accumulates SALT protein even in absence of salt treatment and it has been classified as moderately sensitive to salinity and a superior grain producer. This feature was relevant for this work since it allowed the use of plants without the deleterious effects caused by salinity. Immunocytochemistry assays revealed that the SALT protein is located in the stroma of chloroplasts under non-stressing condition. Since the chloroplast is the main target affected by salinity and considering that the SALT protein does not present any apparent signal peptide for organelle localization, its lectin-like activity seems to play an important role in the establishment of stable complexes, either to other proteins or to oligosaccharides that are translocated to the chloroplast. © 2011 China National Rice Research Institute.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have employed an inverse engineering strategy based on quantitative proteome analysis to identify changes in intracellular protein abundance that correlate with increased specific recombinant monoclonal antibody production (qMab) by engineered murine myeloma (NSO) cells. Four homogeneous NSO cell lines differing in qMab were isolated from a pool of primary transfectants. The proteome of each stably transfected cell line was analyzed at mid-exponential growth phase by two-dimensional gel electrophoresis (2D-PAGE) and individual protein spot volume data derived from digitized gel images were compared statistically. To identify changes in protein abundance associated with qMab clatasets were screened for proteins that exhibited either a linear correlation with cell line qMab or a conserved change in abundance specific only to the cell line with highest qMab. Several proteins with altered abundance were identified by mass spectrometry. Proteins exhibiting a significant increase in abundance with increasing qMab included molecular chaperones known to interact directly with nascent immunoglobulins during their folding and assembly (e.g., BiP, endoplasmin, protein disulfide isomerase). 2D-PAGE analysis showed that in all cell lines Mab light chain was more abundant than heavy chain, indicating that this is a likely prerequisite for efficient Mab production. In summary, these data reveal both the adaptive responses and molecular mechanisms enabling mammalian cells in culture to achieve high-level recombinant monoclonal antibody production. (C) 2004 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cells undergoing apoptosis in vivo are rapidly detected and cleared by phagocytes. Swift recognition and removal of apoptotic cells is important for normal tissue homeostasis and failure in the underlying clearance mechanisms has pathological consequences associated with inflammatory and auto-immune diseases. Cell cultures in vitro usually lack the capacity for removal of non-viable cells because of the absence of phagocytes and, as such, fail to emulate the healthy in vivo micro-environment from which dead cells are absent. While a key objective in cell culture is to maintain viability at maximal levels, cell death is unavoidable and non-viable cells frequently contaminate cultures in significant numbers. Here we show that the presence of apoptotic cells in monoclonal antibody-producing hybridoma cultures has markedly detrimental effects on antibody productivity. Removal of apoptotic hybridoma cells by macrophages at the time of seeding resulted in 100% improved antibody productivity that was, surprisingly to us, most pronounced late on in the cultures. Furthermore, we were able to recapitulate this effect using novel super-paramagnetic Dead-Cert Nanoparticles to remove non-viable cells simply and effectively at culture seeding. These results (1) provide direct evidence that apoptotic cells have a profound influence on their non-phagocytic neighbors in culture and (2) demonstrate the effectiveness of a simple dead-cell removal strategy for improving antibody manufacture in vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The generation of novel Mycobacterium avium subsp. paratuberculosis (MAP)-specific monoclonal antibodies and phage-display derived peptide binders, along with their application for the magnetic separation (MS) of MAP cells, is described. Our aim was to achieve even greater MAP capture capability than is possible with peptide-mediated magnetic separation (PMS) using a 50:50 mix of biotinylated-aMp3 and biotinylated-aMptD peptide-coated beads. Gamma-irradiated whole MAP cells and ethanol extracted antigens (EEA) from these cells were used to elicit an immune response and as phage-display biopanning targets. A range of novel binders was obtained and coated onto paramagnetic beads, both individually and in various combinations, for MS evaluation. IS900 PCR was employed after MS to provide quick results. Capture sensitivity was assessed using a range of MAP concentrations after which the most promising beads were tested for their specificity for MAP, by performing MS followed by culture using 10 other Mycobacterium species. Magnetic beads coated with the biotinylated EEA402 peptide demonstrated a greater level of MAP capture than the current PMS method, even when low numbers of MAP (<10 cfu/ml) were present; however these beads also captured a range of other mycobacteria and so lacked capture specificity. Magnetic beads coated with monoclonal antibodies 6G11 and 15D10 (used as a 50:50 mix or as dually coated beads) also demonstrated improved MAP capture relative to the current PMS method, but with little cross-reactivity to other Mycobacterium spp. Therefore, two new MS protocols are suggested, the application of which would be dependent upon the required endpoint. Biotinylated EEA402-coated beads could potentially be used with a MAP-specific PCR to ensure detection specificity, while beads coated with 6G11 and 15D10 monoclonal antibodies could be used with culture or the phage amplification assay.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pantothenicacid (PA), vitamin B5, is an essential B vitamin that may be fortified in food and as such requires robust and accurate methods of detection to meet compliance legislation. This study reports the production and characterisation of the first monoclonalantibody (MAb) specific for PA and the subsequent development of a surface plasmon resonance (SPR) biosensorassay for the quantification of PA. The developed assay was compared with an SPR based commercial kit which utilised a polyclonal antibody (PAb). Foodstuffs, including cereals (n = 43), infant formulas and baby food (n = 10) and fruit juices (n = 48) were analysed by both the MAb and PAb biosensorassays and comparison plots showed good correlation (R2 0.77–0.99). The results indicate that the MAb basedbiosensorassay is suitable for the measurement of PA in foodstuffs and has the added advantage of facilitating a constant, long term supply of identical antibody. Preliminary matrix studies suggest the MAb basedassay is an excellent candidate for further validation studies and routine quality assurance based analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Die Nuklearmedizin ist ein modernes und effektives Werkzeug zur Erkennung und Behandlung von onkologischen Erkrankungen. Molekulare Bildgebung, die auf dem Einsatz von Radiopharmaka basiert, beinhaltet die Einzel-Photonen-Emissions-Tomographie (SPECT) und Positronenemissions¬tomographie (PET) und ermöglicht die nicht-invasive Visualisierung von Tumoren auf nano-und picomolarer Ebene.rnDerzeit werden viele neue Tracer für die genauere Lokalisierung von kleinen Tumoren und Metastasen eingeführt und hinsichtlich ihrer Eignung untersucht. Die meisten von ihnen sind Protein-basierte Biomoleküle, die die Natur selbst als Antigene für die Tumorzellen produziert. Dabei spielen Antikörper und Antikörper-Fragmente eine wichtige Rolle in der Tumor-Diagnostik und Behandlung. Die PET-Bildgebung mit Antikörpern und Antikörperfragmenten bezeichnet man als immuno-PET. Ein wichtiger Aspekt hierbei ist, dass entsprechende Radiopharmaka benötigt werden, deren Halbwertszeit mit der Halbwertszeit der Biomoleküle korreliert ist.rnIn neueren Arbeiten wird 90Nb als potenzieller Kandidat für die Anwendung in der immuno-PET vorgeschlagen. Seine Halbwertszeit von 14,6 Stunden ist geeignet für die Anwendung mit Antikörperfragmenten und einige intakten Antikörpern. 90Nb hat eine relativ hohen Anteil an Positronenemission von 53% und eine optimale Energie für die β+-Emission von 0,35 MeV, die sowohl eine hohe Qualität der Bildgebung als auch eine niedrige Aktivitätsmenge des Radionuklids ermöglicht.rnErsten grundlegende Untersuchungen zeigten: i) dass 90Nb in ausreichender Menge und Reinheit durch Protonen-Bombardierung des natürlichen Zirkonium Targets produziert, ii) aus dem Targetmaterial in entsprechender radiochemischer Reinheit isoliert und iii) zur Markierung des monoklonalen Antikörpers (Rituximab) verwendet werden kann und iv) dieser 90Nb-markierte mAb eine hohe in vitro Stabilität besitzt. Desweiteren wurde eine alternative und schnelle Abtrennungsmethode entwickelt, die es erlaubt 90Nb, mit einer geeigneten radiochemischen und radionuklidischen Reinheit für eine anschließende Markierung von Biomolekülen in einer Stunde zu aufzureinigen. Schließlich wurden erstmals 90Nb-markierte Biomolekülen in vivo untersucht. Desweiteren wurden auch Experimente durchgeführt, um den optimalen bifunktionellen Chelatbildner (BFC) für 90Niob zu finden. Mehrere BFC wurden hinsichtlich Komplexbildung mit NbV untersucht. Desferrioxamin (Df) erwies sich als geeignetster Chelator für 90Nb. Der monoklonale Antikörper Bevacizumab (Avastin®) wurde mit 90Nb markiert und eine Biodistributionsstudie und eine PET-Untersuchung durchgeführt. Alle diese Ergebnisse zeigten, dass 90Nb ein vielversprechendes Radionuklid für die Immuno-PET ist, welches sogar für weitere kommerzielle Anwendungen in der klinischen Routine geeignet zu sein scheint.rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multidrug resistance (NIDR) is a major problem in the chemotherapeutic treatment of cancer. Overexpression of the multidrug resistance-associated protein 1 (MRP1), is associated with NIDR in certain tumors. A number of MRP1-specific MAbs, which facilitate both clinical and experimental investigations of this protein, are available. To add to this panel of existing antibodies, we have now generated an additional MRP1-specific monoclonal antibody (MAb), P2A8(6), which detects a unique heat stable epitope on the MRP1 molecule. Female Wistar rats were immunized via footpad injections with a combination of two short synthetic peptides corresponding to amino acids 235-246 (peptide A) and 246-260 (peptide B) of the MRP1 protein. Immune reactive B cells were then isolated from the popliteal lymph nodes for fusion with SP2/O-Ag14 myeloma cells. Resultant hybridoma supernatants were screened for MRP1-specific antibody production. Antibody P2A8(6) was characterized by Western blotting and immunocytochemistry on paired multidrug resistant (MRP1 overexpressing) and sensitive parental cell lines. The antibody detects a protein of 190 kDa in MRP1-expressing cell lines but not in MRP2- or MRP3-transfected cell lines. P2A8(6) stains drug-selected and MRP1-transfected cell lines homogeneously by immunocytochemistry and recognizes MRP1 by immunohistochemistry on formalin-fixed paraffin wax-embedded tissue sections. Peptide inhibition studies confirm that P2AS(6) reacts with peptide B (amino acids 246-260), therefore recognizing a different epitope from that of all currently available MRP1 MAbs. This new MAb, chosen for its specificity to the MRP1 protein, may be a useful addition to the currently available range of MRP1-specific MAbs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experiment was undertaken with 50 Texel x Suffolk-Cheviot lambs (54+/-8.8 days of age) to investigate the effects of active immunisation with a murine monoclonal antibody against clenburerol on growth and carcass characteristics. Animals on treatments 1 and 2 each received 0.1 mg of clenbuterol antibody while animals on treatments 3 and 4 received 0.1 mg of antibody encapsulated within a synthetic polymer. Diethylaminoethyl (DEAE)-dextran was used as the adjuvant in treatments 1 and 3 and saponin in treatments 2 and 4. Control animals were immunised with saponin only. Four immunisations were given at 4-week intervals. Animals were slaughtered 3 weeks after the final immunisation. Each vaccine evoked a similar level of antibody response while the control group showed no titres. Lamb growth rate did not vary significantly between the vaccinated and control groups. Dressing proportion was higher (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protective role of specific antibodies against Paracoccidioides brasiliensis is controversial. In the present study, we analyzed the effects of monoclonal antibodies on the major diagnostic antigen (gp43) using in vitro and in vivo P. brasiliensis infection models. The passive administration of some monoclonal antibodies (MAbs) before and after intratracheal or intravenous infections led to a reduced fungal burden and decreased pulmonary inflammation. The protection mediated by MAb 3E, the most efficient MAb in the reduction of fungal burden, was associated with the enhanced phagocytosis of P. brasiliensis yeast cells by J774.16, MH-S, or primary macrophages. The ingestion of opsonized yeast cells led to an increase in NO production by macrophages. Passive immunization with MAb 3E induced enhanced levels of gamma interferon in the lungs of infected mice. The reactivity of MAb 3E against a panel of gp43-derived peptides suggested that the sequence NHVRIPIGWAV contains the binding epitope. The present work shows that some but not all MAbs against gp43 can reduce the fungal burden and identifies a new peptide candidate for vaccine development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Brazil, the species Tityus serrulatus is responsible for the most severe cases of scorpion envenomation. There is currently a need for new scorpion anti-venoms that are more effective and less harmful. This study attempted to produce human monoclonal antibodies capable of inhibiting the activity of T. serrulatus venom (TsV), using the Griffin.1 library of human single-chain fragment-variable (scFv) phage antibodies. Four rounds of phage antibody selection were performed, and the round with the highest phage antibody titer was chosen for the production of monoclonal phage antibodies and for further analysis. The scFv 2A, designated serrumab, was selected for the production and purification of soluble antibody fragments. In a murine peritoneal macrophage cell line (J774.1), in vitro assays of the cytokines interleukin (IL)-6, tumor necrosis factor (TNF)-alpha, and IL-10 were performed. In male BALB/c mice, in vivo assays of plasma urea, creatinine, aspartate transaminase, and glucose were performed, as well as of neutrophil recruitment and leukocyte counts. It was found that serrumab inhibited the TsV-induced increases in the production of IL-6, TNF alpha, and IL-10 in J774.1 cells. The in vivo inhibition assay showed that serrumab also prevented TsV-induced increases in the plasma levels of urea, creatinine, aspartate transaminase, and glucose, as well as preventing the TsV-induced increase in neutrophil recruitment. The results indicate that the human monoclonal antibody serrumab is a candidate for inclusion in a mixture of specific antibodies to the various toxins present in TsV. Therefore, serrumab shows promise for use in the production of new anti-venom.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zymosan-induced peritonitis is associated with an increased production of reactive nitrogen oxides that may contribute to the often-observed failure of multiple organ systems in this model of acute inflammation. Quantitative biochemical evidence is provided for a marked 13-fold increase in protein-bound 3-nitrotyrosine (NTyr), a biomarker of reactive nitrogen oxides, in liver tissue of zymosan-treated rats. In order to investigate the localization of NTyr in this affected tissue, a monoclonal antibody, designated 39B6, was raised against 3-(4-hydroxy-3-nitrophenylacetamido) propionic acid-bovine serum albumin conjugate and its performance characterized. 39B6 was judged by competition ELISA to be approximately 2 orders of magnitude more sensitive than a commercial anti-NTyr monoclonal antibody. Binding characteristics of 39B6 were similar, but not identical, to that of a commercial affinity-purified polyclonal antibody in ELISA and immunohistochemical analyses. Western blot experiments revealed high specificity of 39B6 against NTyr and increased immunoreactivity of specific proteins from liver tissue homogenates of zymosan-treated rats. Immunohistochemical analysis of liver sections indicated a marked zymosan-induced increase in immunofluorescent staining, which was particularly intense in or adjacent to nonparenchymal cells, but not in the parenchymal cells of this tissue. Quantitative analysis of fractions enriched in these cell populations corroborated the immunofluorescent data, although the relative amounts detected in response to zymosan treatment was greatly reduced compared to whole liver tissue. These results demonstrate the high specificity of the newly developed antibody and its usefulness in Western blot and immunohistochemical analysis for NTyr, confirm the presence of NTyr by complementary methods, and suggest the possible involvement of reactive nitrogen oxides in hepatic vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies (Mab) are heterotetramers consisting of an equimolar ratio of heavy chain (HC) and light chain (LC) polypeptides. Accordingly, most recombinant Mab expression systems utilize an equimolar ratio of heavy chain (he) to light chain (lc) genes encoded on either one or two plasmids. However, there is no evidence to suggest that this gene ratio is optimal for stable or transient production of recombinant Mab. In this study we have determined the optimal ratio of hc:lc genes for production of a recombinant IgG(4) Mab, cB72.3, by Chinese hamster ovary (CHO) cells using both empirical and mathematical modeling approaches. Polyethyleneimine-mediated transient expression of cB72.3 at varying ratios of hc:lc genes encoded on separate plasmids yielded an optimal Mab titer at a hc:lc gene ratio of 3:2; a conclusion confirmed by separate mathematical modeling of the Mab folding and assembly process using transient expression data. On the basis of this information, we hypothesized that utilization of he genes at low hc:lc gene ratios is more efficient. To confirm this, cB72.3 Mab was transiently produced by CHO cells at constant he and varying lc gene dose. Under these conditions, Mab yield was increased with a concomitant increase in lc gene dose. To determine if the above findings also apply to stably transfected CHO cells producing recombinant Mab, we compared the intra- and extracellular ratios of HC and LC polypeptides for three GS-CHO cells lines transfected with a 1:1 ratio of hc:lc genes and selected for stable expression of the same recombinant Mab, cB72.3. Intra- and extracellular HC:LC polypeptide ratios ranged from 1:2 to 1:5, less than that observed on transient expression of the same Mab in parental CHO cells using the same vector. In conclusion, our data suggest that the optimal ratio of hc:lc genes used for transient and stable expression of Mab differ. In the case of the latter, we infer that optimal Mab production by stably transfected cells represents a compromise between HC abundance limiting productivity and the requirement for excess LC to render Mab folding and assembly more efficient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The chemokine receptor CCR5 contains seven transmembrane-spanning domains. It binds chemokines and acts as co-receptor for macrophage (m)-tropic (or R5) strains of HIV-1. Monoclonal antibodies (mAb) to CCR5, 3A9 and 5C7, were used for biopanning a nonapeptide cysteine (C)-constrained phage-displayed random peptide library to ascertain contact residues and define tertiary structures of possible epitopes on CCR5. Reactivity of antibodies with phagotopes was established by enzyme-linked immunosorbent assay (ELISA). mAb 3A9 identified a phagotope C-HASIYDFGS-C (3A9/1), and 5C7 most frequently identified C-PHWLRDLRV-C (5C7/1). Corresponding peptides were synthesized. Phagotopes and synthetic peptides reacted in ELISA with corresponding antibodies and synthetic peptides inhibited antibody binding to the phagotopes. Reactivity by immunofluorescence of 3A9 with CCR5 was strongly inhibited by the corresponding peptide. Both mAb 3A9 and 5C7 reacted similarly with phagotopes and the corresponding peptide selected by the alternative mAb. The sequences of peptide inserts of phagotopes could be aligned as mimotopes of the sequence of CCR5. For phage 3A9/1, the motif SIYD aligned to residues at the N terminus and FG to residues on the first extracellular loop; for 5C7/1, residues at the N terminus, first extracellular loop, and possibly the third extracellular loop could be aligned and so would contribute to the mimotope. The synthetic peptides corresponding to the isolated phagotopes showed a CD4-dependent reactivity with gp120 of a primary, m-tropic HIV-1 isolate. Thus reactivity of antibodies raised to CCR5 against phage-displayed peptides defined mimotopes that reflect binding sites for these antibodies and reveal a part of the gp120 binding sites on CCR5.